JGi JAIN COLLEGE v v puram

$1^{\text {st }}$ PUC MOCK Paper - Jan. 2024

Course: $\quad 1^{\text {st }}$ year PUC
Subject: Mathematics
Max. Marks: 80
Duration: 3:15 hour

PART A

I. Answer all the multiple-choice questions:

1. If $A=(-3,5)$ and $B=[-7,9]$, then
(a) $A=B$
(b) $A \subset B$
(c) $B \subset A$
(d) $A \not \subset B$
2. If $(x+3, y-1)=(-2,1)$
(a) $x=-5, y=0$
(b) $x=-5, y=2$
(c) $x=-5, y=-2$
(d) $x=5, y=0$
3. The radian measure of 25° is equal to
(a) $\frac{5 \pi}{36}$
(b) $\frac{4 \pi}{18}$
(c) $\frac{5 \pi}{18}$
(d) $\frac{4 \pi}{36}$
4. The multiplicative inverse of $2-3 i$ is
(a) $\frac{2}{13}+\frac{3}{13} i$
(b) $\frac{2}{13}-\frac{3}{13} i$
(c) $\frac{2}{13} * \frac{3}{13} i$
(d) $-\frac{2}{13}-\frac{3}{13} i$
5. Graph of system of inequalities $x \geq 0, y \leq 0$ is
(a) First
(b) Second
(c) Third
(d) Forth
6. If ${ }^{6} P_{r}=360,{ }^{6} C_{8}=15$ then the value of r is
(a) 5
(b) 6
(c) 4
(d) 3
7. If n is a +ve integer, then the number of terms in expansion of $(a+b)^{n}$ is
(a) n
(b) $n+1$
(c) $n-1$
(d) $2 n$
8. The value/s of x such that $\frac{-2}{7}, x, \frac{-7}{2}$ are in G.P
(a) 1
(b) ± 1
(c) 2
(d) ± 2
9. The slope of the line $a x+b y+c=0$ is
(a) $\frac{a}{b}$
(b) $\frac{-a}{b}$
(c) $\frac{-c}{b}$
(d) $\frac{c}{b}$
10. The equation of parabola with focus $(0,-3)$ and directrix $y-3=0$
(a) $x^{2}=12 y$
(b) $x^{2}=-12 y$
(c) $y^{2}=12 x$
(d) $y^{2}=-12 x$
11. The center of the circle $(x+3)^{2}+(y-2)^{2}=16$ is
(a) $(3,-2)$
(b) $(3,2)$
(c) $(-3,2)$
(d) $(-3,-2)$
12. The octant in which the point $(5,5,-4)$ lies
(a) First
(b) Sixth
(c) Fifth
(d) Second
13. The derivative of x^{-1} with respect to x is
(a) x^{2}
(b) $\frac{-1}{x^{2}}$
(c) 1
(d) 0
14. The mean of first n natural numbers is
(a) $\frac{n}{2}$
(b) $\frac{n+1}{2}$
(c) $\frac{n}{2}+1$
(d) $\frac{n^{2}+n+1}{2}$
15. The equation of parabola with focus $(0,-3)$ and directrix $y-3=0$
(a) $x^{2}=12 y$
(b) $x^{2}=-12 y$
(c) $y^{2}=12 x$
(d) $y^{2}=-12 x$

II. Fill in the blanks by choosing the appropriate answer from those given in the bracket

 $\{16,1,-1,3,0,20\}$16. If $A=\{1,2\}$ and $B=\{3,4\}$, then the number of relations from A to B is \qquad
17. The value of $\sin (3 \pi)$ is \qquad
18. The value of $\frac{3!}{2!}$ is \qquad
19. The slope of the line passing through the points $(3,-2)$ and $(7,-2)$ is \qquad
20. The derivative of x^{2} at $x=10$ is \qquad

PART B

III. Answer any six questions

$2 \times 6=12$

21. If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\}, C=\{2,4,6,8,10,12,14,16\}$, find $A-B$ and $B-A$
22. List all the subsets of $\{1,2,3,4\}$
23. Prove that $\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=\frac{-1}{2}$
24. Find the multiplicative inverse of $-i$
25. If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$, Prove that $a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$
26. Solve $\frac{3 x-4}{2} \geq \frac{x+1}{4}-1$. Show the graph of the solutions on number line.
27. How many 3 digit even numbers can be formed from the digits $1,2,3,4,5,6$ if the digits can be repeated.
28. Expand $(2 x-3)^{6}$ using Binomial theorem
29. Find the equation of the line parallel to the line $3 x-4 y+20=0$ and passing through the point $(-2,3)$
30. Evaluate $\lim _{x \rightarrow 0}\left(\frac{\sqrt{1+x}-1}{x}\right)$
31. A die is rolled. Let E be the event "die shows 4", F be the event "die shows even number". Are E and F mutually exclusive.

PART C

IV. Answer any six questions

$$
3 \times 6=18
$$

32. Let $U=\{1,2,3,4,5,6\}, A=\{2,3\}, B=\{3,4,5\}$. Prove that $(\mathrm{A} \cup \mathrm{B})^{\prime}=A^{\prime} \cap B^{\prime}$.
33. Let $f(x)=\sqrt{x}, g(x)=x$, be two functions defined over the set of non-negative real numbers. Find $(f+g)(x),(f-g)(x),(f g)(x),\left(\frac{f}{g}\right)(x)$
34. Prove that $\sin (3 x)=3 \sin x-4 \sin ^{3} x$
35. If $\sec x=\frac{13}{5}$, x lies in fourth quadrant. Find the other 5 trigonometric functions
36. Express the following expression in the form of $(a+i b)$

$$
\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+i \sqrt{2})-(\sqrt{3}-i \sqrt{2})}
$$

37. Find all pairs of consecutive odd positive integers both of which are smaller than 10 such that their sum is more than 11.
38. Find a G.P. whose sum of first two terms is -4 and the fifth term is four times the third term.
39. Derive the equation of a line with x -intercept ' a ' and y -intercept ' b ' in the form $\frac{x}{a}+\frac{y}{b}=1$
40. Find the equation of the ellipse with center at $(0,0)$, major axis on Y -axis and passes through the points $(3,2)$ and $(1,6)$.
41. Show that the points $(-1,2,1),(1,-2,5),(4,-7,8),(2,-3,4)$ are vertices of parallelogram.
42. Find the derivative of $\tan x$ with respect to x from first principle.

PART D

V. Answer any four questions
43. Define Modulus function, draw the graph, write the domain and range.
44. Prove that $\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$
45. A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has
(a) No girl
(b) At least one boy and one girl
(c) At least three girls
46. Prove that for every positive integer n ,

$$
(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+----+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}
$$

47. Derive the formula to find distance of a point $P\left(x_{1}, y_{1}\right)$ from the line $A x+B y+C=0$
48. Prove geometrically $\lim _{n \rightarrow 0}\left(\frac{\sin x}{x}\right)=1$, x measured in radians.
49. Find the mean deviation about mean for the following data

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of Students	2	3	8	14	8	3	2

50. A letter is chosen at random from the word ASSASSINATION. Find the probability that the letter is
(a) Vowel
(b) Consonants
(c) 2 I's comes together
(d) Vowels comes together

PART E

VI. Answer the following questions

51. Prove geometrically that $\cos (x+y)=\cos x \cos y-\sin x \sin y$

OR
Define hyperbola as a set of points and derive the equation of the hyperbola in the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
52. Find the sum to n terms of the sequence $8,88,888,8888, \ldots$.

OR
Find the derivative of $f(x)=\frac{x+\cos x}{\tan x}$ with respect to x

